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1. Introduction Interferometry in optical astronomy is an important and growing field of astro- 
nomical observation. A number of stellar interferometers have come online over the past several 
years (e.g. Palomar [l], NPOI [2], REGAIN [3]), and several more are due to be operational in the 
near future (e.g. Keck [4], VLTI [5] ) .  In addition, space based interferometers are also planned 
missions of NASA’s Origins program [6], including the Space Interferometry Mission (SIM), the 
focus of the present paper. The fundamental measurement made by each of these interferometers is 
the white light fringe measurement to determine the optical pathlength delay between the two arms 
of the interferometer. SIM makes white light measurements with three independent interferometers 
observing three different objects. Two of these are the “guide” interferometers that observe bright 
objects (approximately Ph magnitude) to track the rigid body motion of the instrument. The third 
interferometer, the “science” interferometer, observes the science targets of interest. 

A common method for making the white light measurement is to disperse the interfered starlight 
across multiple spectral channels and employ a phase shifting interferometry (PSI) algorithm to 
determine the phase difference in each channel. In the phase-delay method, knowledge of the mean 
wavenumber of each channel is used to convert the phase measurement to a delay measurement. 
The individual delays are then combined to produce a single delay. There are many alternatives 
for performing this last function - the delays can simply be averaged, or they can be combined in 
a weighted least squares sense, etc. When this delay measurement is combined with a metrology 
measurement of the pathlength difference of the starlight as it traverses the optical system, the 
fundamental observable of the instrument is constructed: the “external” pathlength delay, which 
is mathematically equivalent to the projection of the interferometer baseline vector onto the star 
direction vector. From these measurements the astrometric parameters of the star can be estimated. 

This paper focuses on several of the important aspects of how this fundamental observable is 
constructed, and some of the errors that arise in its development. There is a significant history of 
PSI algorithms that deal with commonly associated errors in interferometry measurements. These 
include problems associated with small signal, changes in the pathlength (e.g. vibration) as the 
measurement is being made, non-monochromatic light with error in the mean wavelength in spectral 
channels, etc. In many instances algorithms can be developed to overcome these errrors ([7],[8], 
[9]) Here we will tie together the interferometric measurement with the metrology measurement 
especially to overcome the effects of vibration, and errors inherent in the modulating element. Also 
some preliminary investigation into the impact of non-monochromatic light has PSI algorithms will 
be made. 
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2. Background. SIM makes the pathlength delay measurement by a combination of internal 
metrology measurements to determine the distance the starlight travels through the two arms of 
the interferometer, and a measurement of the white light stellar fringe to find the point of equal 
pathlength. Figure 1 defines the basic geometry of the interferometer. Assume here that the 
optical axes of the two telescopes that comprise the interferometer apertures are aligned with the 
star position vector s. The planes Px and 9. are two planes of equal phase for the planar wavefront 
of the starlight, and each is normal to s. The light through the two arms combine at the beam 
combiner located at z. Let 1x and ly  denote the internal optical pathlength through the X and Y 
arms, respectively, to z. And let TX and Ty denote the total pathlengths of the starlight through 
the X and Y arms. Define 

Ex = Tx - lx; Ey = Ty - ly .  (1) 
Then Ey -EX is the external pathlength, and defines the basic astrometric equation which relates 
the star direction vector and the interferometer baseline vector, 

where Y - X is the baseline vector of the interferometer. Now Ey - EX is not directly observable, 
but from the equation (deduced from (1)) 

EY - Ex  = (TY - T x )  - (lY - lx), (3) 

we see that each of the quantities on the right is observable. Ty-Tx, the total pathlength difference, 
is measured by means of white light fringe estimation, and ly-lx, the internal pathlength difference 
is measured by a metrology system employed by the instrument. 

Eq. (2) is typically written as 

dext(t) = ( b ( t ) ,  S )  + ~ ( t )  (4) 

where dat is the instantaneous external pathlength delay, b( t )  is the instantaneous interferometer 
baseline vector, and Y is the measurement error. The fundamental objective of the instrument is 
to make measurements so that the astrometric parameters of the star vector s can be determined. 
Additional “guide” interferometers and an external metrology system that ties together all of the 
interferometers are used to track the baseline vector b( t ) .  Because a finite integration time is 
required to make this measurement, the basic model for the astrometric equation has the form 

where the overbar represents a time-averaged quantity. The emphasis of the remainder of the 
paper is the synthesis of dext via time-averaging of the white light fringe estimates and the internal 
metrology measurements over the observation period. Obtaining 6 involoves a similar process using 
the guide interferometers and auxillary metrology measurements to relate the three interferometer 
baseline vectors. This process, sometimes refered to as “baseline regularization” [*] will not be 
discussed here. 

3. Measuring the external delay. As described in the previous section, the external delay 
measurement, dext is synthesized from two other delay measurements - the total delay and the 
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internal delay. Henceforth these latter two delays will be denoted dtot and 4 n t .  respectively. The 
three different delays are related: 

dtot = dmt  + dint. 

The initial focus is on how to compute the average external pathlength delay for a single white 
light fringe measurement that requires, say r sec of integration time. We will assume that this 
integration time coincides with the modulation period for the phase shifiting interferometry (PSI) 
measurement. A nominal value for T we will use corresponding to a typical science target is 100ms; 
although dim targets may require several seconds of integration time. We will first take a small 
digression to explain how dtot is ideally measured using white light interferometry 

A general perspective of building phase estimators uses the following simple idea. We start with 
the fundamental interferometric intensity equation for monochromatic light 

(6)  

y = l o p  + V(cos(kz + $ ) ) I ,  (7) 

where y is the observed intensity, IO is the dc intensity, V denotes the visibility, IC is the wavenumber 
of the monochromatic light (or mean wavenumber over a spectral channel), z is a known modulator 
displacement, and q5 is the sought after phase. Phase shifting interferometry entails introducing 
known pathlength changes via the z variable in the expression above to set up a nonlinear system 
of equations to solve for all of the unknown variables. The common way for solving this system is 
to introduce the state X consisting of three components, X (Io,IoVcos(q5),loVsin(q5)). It can 
be shown [7] that the system of equations is linear in X, 

Y = A X ,  (8) 

where Y is the vector of observed photon counts at different values of pathlength change variable 
z, and A is a known matrix that maps the state vector into the observation vector. 

An N-bin algorithm essentially uses N values of z in (7) to generate N values of the observed 
intensity y. Hence, N equations in the three unknown variables. For an N -  bin “integrating 
bucket” algorithm (see [12]) centered at zero we define s as the total stroke length of the phase 
modulator and we let X denote the wavelength of the light. From these two variables we define 
y = s / X  and A = 27ry/N. In the integrating bucket method, the modulator linearly sweeps through 
27~y radians from - 7 r ~  to ~ y .  The design matrix A for the integrating bucket method that relates 
photon counts to the state is obtained by integrating (7) over the “buckets” (ui - A/2, ui + A/2) 
with respect to z. The resulting A matrix has the form (cf [12]) 

where ui = (i - 1/2 - N/2)A. The estimate of X is obtained from any  unbiased linear estimator of 
the state, and the phase is subsequently derived from X via q5 = arctan(X3/Xz). Once the phase 
has been determined, the delay is calculated by using the wavelength of the light. To avoid multiple 
wavelength ambiguities in the delay, the white light is dispersed into multiple spectral channels, 
each with a different mean wavelength. The ambiguities can be resolved by using the multiple 
wavelengths [14]. A question that is addressed in Section 5 is the validity of using monochromatic 
algorithms in a spectral channel that has a nonvanishing width. 
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So keping in mind the need to modulate the pathlength in order to measure it, we write 

where dpzt(t) is the.pathlength introduced by the modulation. If everything is “perfect”, the white 
light fringe estimate is an estimate of dext + dint, which presumes that this value is constant over 
the r second integration time. (In reality this is not the case, and this important non-ideality will 
be discussed in the next section.) Call this measurement ywl; 

Keeping in mind that the internal pathlength is changing due to the phase modulation, the mea- 
surement made by internal metrology has the form 

- 
The average value of m is dznt since dpzt = 0, thus 

4. Mechanical white light error sources and some fixes. There are many different 
sources of errors contributing to white light fringe estimation. In this section we will focus on the 
class that is generated by changes in the pathlength while the phase is being measured. When the 
pathlength is changing, even if we interpret eq.(13) as the average external pathlength difference 
over the r second integration period (which is indeed the quantity that is required for the astrometric 
relationship in (2)), there in general will be an error because ywl may not compute the average 
total pathlength delay over the integration time. 

One immediate way of generating an error of this type is if the motion of the modulator 
deviates from the motion assumed in the phase estimation algorithm, i.e. the matrix A in (9) 
which is constructed from an ideal modulator motion is in error. A straightforward way around 
this problem is to use the internal metrology measurement to create a new matrix A with every 
modulation stroke. Unfortunately this is not entirely desirable because in addition to building this 
matrix for each phase measurement, its pseudoinverse also has to be constructed to generate the 
phase delay. An alternative to this is to use an algorithm based on an assumed and fixed trajectory 
of the modulating element, and then make corrections to the computed phase based on measured 
values obtain from internal metrology. The main advantage here is simplicity, with payoffs including 
a reduced computational load, and very importantly, a simpler analysis of errors. 

Following this tack, denote the modeled trajectory by qzd and write 
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So now 
Y ~ E  = d a t  + &,t, 

with metrology measurements 

Averaging the metrology measurements yields 

m(t) = dzrnt + q;’(t). 

Although we have apparently circumvented the need for redefining an A matrix with each stroke, 
the probelm is not completely solved. We have introduce the time varying term &(t) - d z d ( t )  
into the total path. 

2. White light systematic errors. Define 6,,t(t) and 6&,(t) by 

6ezt = dezt ( t )  - Jezt , b,*,t(t) = dznt(t) - Grit (22) 

and set 
6 Sat + 6&,. 

Suppose an N-bin integrating bucket algorithm is used to convert the vector of photon counts 
( y ~ ,  . . . , y p ~ )  into phasor estimates IoVcos(q5),IoVsin(~) by the 3 x N gain matrix K = ( k i j ) ,  

where IO = intensity, V = visibility and 4 = phase. The true average delay over the single phase 
measurement period is dat + en, with associated phase $, 

where X denotes the wavelength of the light. In [9] it is shown that the error in the estimate using 
the phase derived from (24) is 

u;+A/2 uii-A/2 {E k3j[cos2($) / sin(u)6(~/27~y)du + sin(2$)/2 / cos(u)6(u/27~y)du] + 1 
$’ - ’ = 2 sin(A/2) u;-A/2 ~i - A/2 

~ i + A / 2  uii-A/2 
k2j[sin(2$)/2 / sin(u)6(~/27~y)du + sin2($) / cos(u)6(u/27~y)du]} 

U;  - A/2 &-A12 

Note that in general the white light error due to the pathlength variation 6 is also a function of 
the offset $. For SIM applications $ is typically small (a fraction of a radian), and the first term 
dominates the error. 
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A frequency response of the error can be generated for any given gain matrix K by fixing a phase 
offset for 1c, and computing the resulting error for deviations of the form 6( t )  = sin(&) - p(w), 
where w = 1 corresponds to the modulation frequency and p(w) is the average value of sin(wt) 
over the modulation interval. Because the astrometric observable entails an average value of the 
external pathlength delay over several seconds of integration time on a typical science object, an 
important quantity is the average value of the error due to sinusoid variation of frequency w over 
many, say M ,  modulation periods. (For example, if a 30sec integration time is required and a 
delay measurement is made every .lsec, then M = 300.) In [lo] this error is shown to have a form 
(ignoring the variations in T,LJ from measurement to measurement) 

~ c l v e ( ~ )  = f ( 4 C M ( W )  + S @ ) S M ( 4 ,  (27) 

and the functions f and g decrease as 1/w with increasing frequency. The sums above can be com- 
puted analytically to obtain (using the complex exponential forms for sin and cos and recognizing 
the sums as a geometric series), 

, (29) 
sin(2(M - 1)7rw) + sin(2rw) - sin(2Mrw) . 

2M(1 - cos(27rw)) s M ( w )  = 

and 
1 - cos(27rw) + cos(27r(M - 1)w) - cos(2Mrw) 

2M(1 - cos(27rw)) C M ( W )  = 

Thus when w is an integer, there is no attenuation in the error due to averaging. But when it is 
not, the error will decrease as 1/M for each frequency u. Because of the denominator terms, it 
is seen that the attenuation is slower when the frequency is close to  an integer. The oscillation 
in the error will also be slower for frequency values near an integer. This oscillation frequency is 
wo G w mod 1, so that with M measurements there would be Mwo total oscillations. In contrast 
to the case of a periodic disturbance with an integer frequency, the expectation for an arbitrary 
signal based on Fourier analysis is that the average error diminishes with time (increasing number 
of intervals). Thus, periodic disturbances that are close to an integral multiple of the modulator 
frequency will attenuate slowly (and not at all if the disturbance is an exact multiple). 

The error formula (26) can be used to correct the phase error if the deviation function 6 is 
known. We will begin by assuming this is the case, and then discuss how this can be implemented 
and identify the residual errors. 

Simplifying the notation, we may write (26) as 

where G(u,$J) is formed directly from the gain definition and the true phase $J. Suppose 6(u) is 
known, and write e = II, - 4. Then (31) can be written as 
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Then, 

As 6(u) is presumably small, the second term in the expression above should be ignorable, and we 
are left with 

$ = 4 + / G(u, 4)6(u)d'LL. (34) 

The implementation of the correction term in (34) is straightforward. Let ( k i j )  denote the 3 x N 
components of the gain matrix. Then for i = 1, ..., N the following quadratures are computed: 

Then (36) is implemented as 

Recall that S is the deviation about the mean of the sum of the external path and the modified 
internal path. This quantity is actually somewhat observable for the science interferometer. 

4. Sources of error. The mechanical sources for error in the determination of the white 
light estimate are those mechanisms that directly contribute variations about the mean of the 
external path and variations about the mean of the modified internal path defined in (1) and (15), 
respectively. 

Since the star direction vector may assumed to be fixed in inertial space over the duration of 
the observation, the only way the external path can change is by a change in the inertial position 
of the interferometer baseline vector. This vector is defined as the difference between the two 
fiducial positions on the siderostat mirrors, and is thus affected by both rigid body motion of the 
instrument and vibrations propagating through the siderostats. The only means for active control 
of the external pathlength is via the attitude control system. Because the bandwidth of the attitude 
control system is between .1Hz and .OlHz, and the modulation period is typically less than a second 
(.lsec for grid star, faster for a guide star), the rigid body contribution to S.&t is the dominant term 
for the science interferometer and is essentially linear. (A representative disturbance spectrum for 
the felxible body contribution is being developed.) The pathlength control system compensates for 
the rigid body motion to maintain the total pathlength error to the 10nm requirement to ensure 
good fringe visibility. The controller therefore introduces a large change in the internal path for 
the science interferometer. Assuming the rigid body motion of the instrument is a sinusoid with 
amplitude of 10-5rad (about 2asec) and a frequency of .OlHz, the maximum external pathlength 
velocity is about 6pm/sec. If a phase measurement is made every .lsec, as is assumed for the 
science interferometer, the pathlength controller' must vary the internal pathlength by .6pm to 
compensate for the change in the external pathlength over the phase measurement time period to 
achieve the lOnm requirement. Hence, the presence of pathlength control mitigates the external 
and internal pathlength variations that contribute to the white light estimation error. In fact the 
guide interferometers and external metrology provide the signal that drives the compensation and 
if the control system acts ideally, the internal pathlength changes introduced by the controller 
completely cancel the external pathlength changes. 
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In the real situation the compensation is effective over some specified bandwidth, and a residual 
variation remains with spectral content beyond the bandwidth of the controller. Also what remains 
uncompensated are the inaccuracies of the signal, the implementation of the controller, internal 
vibrations/drifts, and modulator motion error. Using a k e d  gain phase measurement algorithm, 
the contribution of modulator motion to the error is the difference between the assumed motion 
and the true motion of the modulator. 

5. Non-monochromatic problem. The analysis thus far has centered around the monochro- 
matic light case. Modifications are necessary when the spectral bandwidth is not vanishingly small. 
In this section we will take a preliminary look at some of the parameters that may mandate these 
modifications. We examine three parameters: the number of spectral channels (which determines 
the channel width), the number of time bins, and the pathlength delay that is to be estimated. 
For example, increasing the number of channels eventually reduces to the monochromatic case. 
So one question is how many channels are necessary to make the problem look monochromatic? 
And when this is not possible, what modifications of the baseline monochromatic estimator are 
necessary to recover performance? We will be treating only the simplest model that assumes a 
rectangular bandpass with constant intensity/visibility within the channel. For simplicity we will 
only analyze the situation using a phase stepping (as opposed to integrating bucket) modulation 
scheme. 

When the monochromatic estimator is not sufficient for this model there are essentially two 
modifications that can be made. The simplest one involves including a known sinc function in the 
matrix equation that relates the state variables (intensity and phasor quantities) to the measured 
intensities. The more complex model contains the unknown delay as part of the sinc term. This 
model leads to a nonlinear estimation problem to determine the state variables. We will focus 
attention throughout this discussion on a single spectral channel with mean wave number 50 (ko = 
27r/Xo, with XO denoting the corresponding wavelength) and channel width Ak. We will assume 
throughout that Ak = 27r/(103M) (units of l/nm) where M denotes the number of spectral 
channels. (This value of Ak approximately corresponds to a spectral band between 500nm and 
lOOOnm divided into M channels.) For a pathlength difference, z, the intensity model using a 
rectangular bandpass is [l] 

If 6 denotes the unknown delay, and the pathlength is modulated in N equidistant steps, xi = 
iXo/N, i = 1, ..., N ,  the estimation problem is to determine 6 from the N equations 

I = I o [ l +  Vsinc(Akx/2) cos(koz)]. (37) 

yi = I o [ l +  Vsinc(Akzi/2 + Ak6/2) cos(kozi + koS)] 

In what follows yi, ko, Ak, and xi are all assumed to be known, i.e., we are postulating a phase 
stepping method in which there is no measurement error, the wavenumbers and spectral channels 
widths have been precisely calibrated, and the phase steps have no error. 

It is useful to relate the value of the sinc function in (1) to unity to capture the comparison 
between the models (2) and (3). If M channels are used and the modulation sweeps a micron, the 
maximum deviation of sinc(Akz/2) from unity is about 7r2/(6M2); which provides some measure 
of the deviation between the two models. To truly quantify the errors in the estimate of the delay 
it is necessary to solve for the delays in the two models. 
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The ususal manipulation of (3) leads to the linear estimation problem from the system 

r y1 1 r l  cos(u1) -sin(ul) 1 r 1, i 

1 . 1  I :  I = I :  I .  
YN 1 COS(UN) - s i n ( u ~ )  Io sin($) 

I I I Iocos(#J) I > (39) 

- 0  
E - 
E 
s - c 
B 
- 6 
m 

-0.5. 

where ui = kozi and #J = koa. (The slightly different form of the equations is due to the 
phasestepping versus integrating-bucket modes of phase modulation.) We will write the nom- 
inal monochromatic system of equations as 

In the figure below we plot the true delay versus the error in the delay estimate based on the model 
(3). These errors were computed for four different combinations of time bins and spectral channels. 
The wavelength and modulation length are both 750 nm in these plots. 

0.5 I 1 

8 bins. 4 channels - -- 
k n s .  8 channels 

- 
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3 
\ ------ 
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\ 

bins, 4 channels ‘\_1 
1 
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-1 I 

delay (nm) 

Figure 1. Phase estimation error using monochromatic alogrithm 

Thus it is seen that using eight spectral channels produces a relatively small error (although not 
necessarily acceptable for all applications). This error is what is obtainable without modifying the 
basic algorithm. 
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In the next figure the number of channels is increased to 16, and two modulation lengths were 
used: 750 nm and 1000 nm, while the wavelength was fixed at 750 nm. The resulting error in the 
worst case is less than 50pm. 

\ 

0.05 

Figure 2. Phase estimation error using monochromatic alogrithm with 16 spectral channels 

Next we model (1) using the sinc function, but only at the known modulated delays. This 
model has the form 

which we write in matrix form as 

y = AX. (42) 
In anticipation of a larger nonlinearity that results when the number of spectral channels is de- 
creased and/or the delay ofbet becomes larger, we introduce the matrix function A(S), 

r y1 3 r l  sinc(Ak[zl + S]/2) cos(u1) -sinc(Ak[zl + 6]/2) sin(u1) l r 1 

YN 1 s i n ~ ( A k [ z ~  + 6]/2) COS(UN) -sinc(Ak[a:N 4- 6]/2) sin(uN) IO sin(+> 
I :  I = I :  I I I Iocos(+) I . (43) 1 . 1  I .  

With this notation, A = A(0).  
The phase estimate is recovered exactly as before, viz. 4 = arctan(is/i2) where 2 = Aty. (At 

is the pseudoinverse of A.) It is important to realize that this is still a linear estimation problem. 
Figure 3 contains results, analogous to those in Figure 1. It is seen that an eight bin/eight spectral 
channel algorithm yields a very small error that should sufEce for almost all applications. However, 
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the use of eight spectral channels may increase the read noise penalty to be unusable on dim stars. 
In the worst case (four bins, four channels, 50nm offset), an error of about 85 pm results. 

Because the results are somewhat insensitive to the small error in the model of the sinc function 
(using A(0) instead of A(S)), we conjecture that error analysis of this algorithm does not have to 
include the effects of (small) errors introduced through the sinc term in (1). Hence, much of the 
analysis should very closely follow the analysis that has been worked through for monochromatic 
light. 

0.02 . 

" I  -0.06 

\ 

t -0.08 u 
I 

0 5 10 15 20 25 30 35 40 45 50 
-0.1 I 

delay (nm) 

Figure 3. Phase estimation errors due to imprecise modeling for 4 configurations. 

5.1. A nonlinear estimation scheme. For larger values of Ak and 6 (or more stringent 
requirements) a nonlinear approach to the estimation problem is necessary. Thus we introduce the 
function 

where S(z) = tan-1(z3/z2), and determine a fixed point of the map. That is we solve the equation 
G(z) = [A(6(z:>)ltY, (44) 

z = G(z). (45) 

zk+l = G ( z ~ ) ,  20 = G(0) = A(0)ty. (46) 

This equation is solved via the fixed-point teration scheme 

Convergence of the scheme is motivated as follows. First we note that a fixed point exists. (This 
is guaranteed by (2). In the case of noise on the measurements, a regularity argument must be 
used to prove existence.) Given that a fixed point exists, local convergence of the iteration (11) is 
established if it can be shown that IG'(z)I < 1 in a neighborhood of the solution. An important 
approximation leading to this result is (see [3]) 

IAt - Btl 5 IAtllA - BIF, (47) 
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where 1 .  ( F  denotes the Fkobenius norm. Thus we are led to an analysis of d/dz[A(Sx)y], and to find 
conditions so that this the norm of this is small. But the components of the matrix A containing 
Sz are of the sinc(r + 6z) where 6z = tan-l(x:3/z2). The sinc function is relatively flat for small 
values of T ,  and by operating with 6z near zero, the derivatives are small. These arguments (made 
carefully) lead to the bound IG'I < 1 in a neighborhood of the solution, and thereby justifying the 
iteration scheme. 

An application of this iteration that may be of some interest is to consider the solution to the 
problem with a single spectral channel. This wide spectral band leads to a large value of Ak, 
and the phasor estimation problem becomes nonlinear. In Figure 4 we plot the error in the delay 
estimate using the linear model (6)  (with wavelength=900nm). 

1.51 I 

, /' 

-0 5 10 15 20 25 30 35 40 45 50 
delay (nm) 

Figure 4. Phase estimation errors due to linear model. 
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Note that over a nanometer of error results. Next we invoke the iteration scheme (11). The 
errors from the scheme are shown in Figure 5 for one and two iterations. The maximum error after 
two iterations is less than 2 pm. A third iteration leads to a maximum error that is sub-picometer. 
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5 
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E 0.03 
4 0.025 

I 

0.05 

One iteration 

/ 
- 

- 

- 
5 E 0.03 
4 0.025 

I 

One iteration - 

- 

Two iterations 

delay (nm) 

Figure 5. Phase estimation error using iteration scheme. 

The idea of using a single spectral channel is a little intriguing from an SNR perspective, but is 
doubtful whether this simplified model of such a wide spectral channel is a faithful representation 
of the physics. For example, we probably cannot assume that the light has uniform intensity 
across the band, and this in turn affects the definition of the mean wavelength of the radiation [2]. 
But getting a handle on these sensitivities is worthwhile in general, since there will be a trade in 
performance between the number of channels, SNR, and the magnitude of errors due to wavelength 
dependent phenomena. 
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1. Introduction Interferometry in optical astronomy is an important and growing field of astro- 
nomical observation. A number of stellar interferometers have come online over the past several 
years (e.g. Palomar [l], NPOI [2], =GAIN [33), and several more are due to be operational in the 
near future ( e g  Keck [4], VLTI [5 ] ) .  In addition, space based interferometers are also planned 
missions of NASA’s Origins program [6], including the Space Interferometry Mission (SIM), the 
focus of the present paper. The fundamental measurement made by each of these interferometers is 
the white light fringe measurement to determine the optical pathlength delay between the two arms 
of the interferometer. SIM makes white light measurements with three independent interferometers 
observing three different objects. Two of these are the “guide” interferometers that observe bright 
objects (approximately Fh magnitude) to track the rigid body motion of the instrument. The third 
interferometer, the “science” interferometer, observes the science targets of interest. 

A common method for making the white light measurement is to disperse the interfered starlight 
across multiple spectral channels and employ a phase shifting interferometry (PSI) algorithm to 
determine the phase difference in each channel. In the phase-delay method, knowledge of the mean 
wavenumber of each channel is used to convert the phase measurement to a delay measurement. 
The individual delays are then combined to produce a single delay. There are many alternatives 
for performing this last function - the delays can simply be averaged, or they can be combined in 
a weighted least squares sense, etc. When this delay measurement is combined with a metrology 
measurement of the pathlength difference of the starlight as it traverses the optical system, the 
fundamental observable of the instrument is constructed: the “external” pathlength delay, which 
is mathematically equivalent to the projection of the interferometer baseline vector onto the star 
direction vector. From these measurements the astrometric parameters of the star can be estimated. 

This paper focuses on several of the important aspects of how this fundamental observable is 
constructed, and some of the errors that arise in its development. There is a significant history of 
PSI algorithms that deal with commonly associated errors in interferometry measurements. These 
include problems associated with small signal, changes in the pathlength (e.g. vibration) as the 
measurement is being made, non-monochromatic light with error in the mean wavelength in spectral 
channels, etc. In many instances algorithms can be developed to overcome these errrors ([7],[8], 
[9]) Here we will tie together the interferometric measurement with the metrology measurement 
especially to overcome the effects of vibration, and errors inherent in the modulating element. Also 
some preliminary investigation into the impact of non-monochromatic light has PSI algorithms will 
be made. 
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2. Background. SIM makes the pathlength delay measurement by a combination of internal 
metrology measurements to determine the distance the starlight travels through the two arms of 
the interferometer, and a measurement of the white light stellar fringe to find the point of equal 
pathlength. Figure 1 defines the basic geometry of the interferometer. Assume here that the 
optical axes of the two telescopes that comprise the interferometer apertures are aligned with the 
star position vector s. The planes Px and 4. are two planes of equal phase for the planar wavefront 
of the starlight, and each is normal to s. The light through the two arms combine at the beam 
combiner located at z. Let lx and ly denote the internal optical pathlength through the X and Y 
arms, respectively, to z. And let Tx and Ty denote the total pathlengths of the starlight through 
the X and Y arms. Define 

Ex = Tx - lx; Ey  = Ty - l y .  (1) 
Then EY -Ex  is the external pathlength, and defines the basic astrometric equation which relates 
the star direction vector and the interferometer baseline vector, 

where Y - X is the baseline vector of the interferometer. Now Ey - EX is not directly observable, 
but from the equation (deduced from (1)) 

EY - Ex = (TY - T x )  - (lY - lx), (3) 

we see that each of the quantities on the right is observable. Ty-Tx, the total pathlength difference, 
is measured by means of white light fringe estimation, and ly-Zx, the internal pathlength difference 
is measured by a metrology system employed by the instrument. 

Eq. (2) is typically written as 

de&) = (W), 3) + y ( t )  (4) 

where dat is the instantaneous external pathlength delay, b(t)  is the instantaneous interferometer 
baseline vector, and Y is the measurement error. The fundamental objective of the instrument is 
to make measurements so that the astrometric parameters of the star vector s can be determined. 
Additional “guide” interferometers and an external metrology system that ties together all of the 
interferometers are used to track the baseline vector b(t) .  Because a finite integration time is 
required to make this measurement, the basic model for the astrometric equation has the form 

Zext = (s,@ + v, (5) 

where the overbar represents a time-averaged quantity. The emphasis of the remainder of the 
paper is the synthesis of dezt via time-averaging of the white light fringe estimates and the internal 
metrology measurements over the observation period. Obtaining 5 involoves a similar process using 
the guide interferometers and a d a r y  metrology measurements to  relate the three interferometer 
baseline vectors. This process, sometimes refered to as “baseline regularization” [*] will not be 
discussed here. 

3. Measuring the external delay. As described in the previous section, the external delay 
measurement, dest is synthesized from two other delay measurements - the total delay and the 
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internal delay. Henceforth these latter two delays will be denoted dt0t and U&t. respectively. The 
three different delays are related: 

dtot = dezt + dint- 

The initial focus is on how to compute the average external pathlength delay for a single white 
light fringe measurement that requires, say T sec of integration time. We will assume that this 
integration time coincides with the modulation period for the phase shifiting interferometry (PSI) 
measurement. A nominal value for 7 we will use corresponding to a typical science target is 100ms; 
although dim targets may require several seconds of integration time. We will f is t  take a small 
digression to explain how dt,t is ideally measured using white light interferometry 

A general perspective of building phase estimators uses the following simple idea. We start with 
the fundamental interferometric intensity equation for monochromatic light 

(6) 

y = l o p  + V(cos(kz + $>>I ,  (7) 

where y is the observed intensity, IO is the dc intensity, V denotes the visibility, IC is the wavenumber 
of the monochromatic light (or mean wavenumber over a spectral channel), z is a known modulator 
displacement, and 4 is the sought after phase. Phase shifting interferometry entails introducing 
known pathlength changes via the x variable in the expression above to set up a nonlinear system 
of equations to solve for all of the unknown variables. The common way for solving this system is 
to introduce the state X consisting of three components, X G (Io, IoV cos($), IoV sin(#)). It can 
be shown [7] that the system of equations is linear in X, 

Y = A X ,  (8) 

where Y is the vector of observed photon counts at different values of pathlength change variable 
x, and A is a known matrix that maps the state vector into the observation vector. 

An N-bin algorithm essentially uses N values of x in (7) to generate N values of the observed 
intensity y. Hence, N equations in the three unknown variables. For an N -  bin “integrating 
bucket” algorithm (see [12]) centered at zero we define s as the total stroke length of the phase 
modulator and we let X denote the wavelength of the light. From these two variables we define 
y = s/X and A = 27ry/N. In the integrating bucket method, the modulator linearly sweeps through 
27r-y radians from -7r.y to ~ y .  The design matrix A for the integrating bucket method that relates 
photon counts to the state is obtained by integrating (7) over the “buckets” (w - A/2,ui + A/2) 
with respect to 2. The resulting A matrix has the form (cf [12]) 

where w = (i - 1/2 - N/2)A. The estimate of X is obtained from any unbiased linear estimator of 
the state, and the phase is subsequently derived from X via $ = arctan(X3/X2). Once the phase 
has been determined, the delay is calculated by using the wavelength of the light. To avoid multiple 
wavelength ambiguities in the delay, the white light is dispersed into multiple spectral channels, 
each with a different mean wavelength. The ambiguities can be resolved by using the multiple 
wavelengths [14]. A question that is addressed in Section 5 is the validity of using monochromatic 
algorithms in a spectral channel that has a nonvanishing width. 
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So keping in mind the need to modulate the pathlength in order to measure it, we write 

where dpzt(t)  is thepathlength introduced by the modulation. If everything is “perfect”, the white 
light fringe estimate is an estimate of dezt + dint, which presumes that this value is constant over 
the T second integration time. (In reality this is not the case, and this important non-ideality will 
be discussed in the next section.) Call this measurement ywl; 

Keeping in mind that the internal pathlength is changing due to the phase modulation, the mea- 
surement made by internal metrology has the form 

- 
The average value of m is since dpzt = 0, thus 

4. Mechanical white light error sources and some fixes. There are many different 
sources of errors contributing to white light fringe estimation. In this section we will focus on the 
class that is generated by changes in the pathlength while the phase is being measured. When the 
pathlength is changing, even if we interpret eq.(13) as the average external pathlength difference 
over the r second integration period (which is indeed the quantity that is required for the astrometric 
relationship in (2)), there in general will be an error because ywl may not compute the average 
total pathlength delay over the integration time. 

One immediate way of generating an error of this type is if the motion of the modulator 
deviates from the motion assumed in the phase estimation algorithm, i.e. the matrix A in (9) 
which is constructed from an ideal modulator motion is in error. A straightforward way around 
this problem is to use the internal metrology measurement to create a new matrix A with every 
modulation stroke. Unfortunately this is not entirely desirable because in addition to building this 
matrix for each phase measurement, its pseudoinverse also has to be constructed to generate the 
phase delay. An alternative to this is to use an algorithm based on an assumed and fixed trajectory 
of the modulating element, and then make corrections to the computed phase based on measured 
values obtain from internal metrology. The main advantage here is simplicity, with payoffs including 
a reduced computational load, and very importantly, a simpler analysis of errors. 

Following this tack, denote the modeled trajectory by qzd and write 
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So now 
YWE = d d  + J:nt, 

with metrology measurements 
m(t) = qnt + G d ( t ) .  

Averaging the metrology measurements yields 

since dZd  = 0. Thus - 
Ywc- f i  = dext, 

Although we have apparently circumvented the need for redefining an A matrix with each stroke, 
the probelm is not completely solved. We have introduce the time varying term o&(t) - dzd(t) 
into the total path. 

2. White light systematic errors. Define Se,t(t) and Stnt(t) by 

Sezt = &zt(t) - Jext, S:nt(t) = d:nt(t) - z n t  (22) 

and set 
6 = 6ext + qnt. 

Suppose an N-bin integrating bucket algorithm is used to convert the vector of photon counts 
(yl, ..., yp~) into phasor estimates I~Vcos(#),loVsin($) by the 3 x N gain matrix K = (kq), 

where IO = intensity, V = visibility and # = phase. The true average delay over the single phase 
measurement period is d- + Gnt with associated phase $, 

(25) 
27r - 

$ = x ( d e z t  + 
where X denotes the wavelength of the light. In [9] it is shown that the error in the estimate using 
the phase derived from (24) is 

Note that in general the white light error due to the pathlength variation S is also a function of 
the offset $. For SIM applications .J, is typically small (a fraction of a radian), and the first term 
dominates the error. 
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A frequency response of the error can be generated for any given gain matrix K by fixing a phase 
offset for $ and computing the resulting error for deviations of the form 6( t )  = sin(wt) - p(w),  
where w = 1 corresponds to the modulation frequency and p(w) is the average value of sin(wt) 
over the modulation interval. Because the astrometric observable entails an average value of the 
external pathlength delay over several seconds of integration time on a typical science object, an 
important quantity is the average value of the error due to sinusoid variation of frequency w over 
many, say M ,  modulation periods. (For example, if a 30sec integration time is required and a 
delay measurement is made every .lsec, then M = 300.) In [lo] this error is shown to have a form 
(ignoring the variations in 4 from measurement to measurement) 

G Z v e ( 4  = f ( 4 C M ( 4  + 9 ( 4 S M ( 4 ,  (27) 

where 
1 M-1 

and the functions f and g decrease as 1/w with increasing kequency. The sums above can be com- 
puted analytically to obtain (using the complex exponential forms for sin and cos and recognizing 
the sums as a geometric series), 

sin(2(M - l)7rw) + sin(2rw) - sin(2Mrw) 
2M(1- cos(27rw)) 

1 - cos(27rw) + cos(27r(M - 1)w) - cos(2Mrw) 
2M(1 - cos(2nw)) 

s M ( U )  = 1 

and 
GvI(w)  = 

Thus when w is an integer, there is no attenuation in the error due to averaging. But when it is 
not, the error will decrease as 1/M for each frequency w. Because of the denominator terms, it 
is seen that the attenuation is slower when the frequency is close to an integer. The oscillation 
in the error will also be slower for frequency values near an integer. This oscillation frequency is 
wo = w mod 1, so that with M measurements there would be Mwo total oscillations. In contrast 
to the case of a periodic disturbance with an integer frequency, the expectation for an arbitrary 
signal based on Fourier analysis is that the average error diminishes with time (increasing number 
of intervals). Thus, periodic disturbances that are close to an integral multiple of the modulator 
frequency will attenuate slowly (and not at all if the disturbance is an exact multiple). 

The error formula (26) can be used to correct the phase error if the deviation function 6 is 
known. We will begin by assuming this is the case, and then discuss how this c a  be implemented 
and identify the residual errors. 

Simplifying the notation, we may write (26) as 

4 - 4 = 1 G(u, 4)6(4& (31) 

where G(u,@) is formed directly from the gain definition and the true phase $. Suppose 6(u) is 
known, and write e = - 4. Then (31) can be written as 
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Then, 

As 6(u) is presumably small, the second term in the expression above should be ignorable, and we 
are left with 

$ = 4 + / G(u, 4 ) W d u .  (34) 

The implementation of the correction term in (34) is straightforward. Let (Ici j )  denote the 3 x N 
components of the gain matrix. Then for i = 1, ..., N the following quadratures are computed: 

u i f A l 2  uiSA/2 
si = J sin(u)6(u/2xy)ciu7 ci = / cos(u)~(u/27ry)ciu. (35) 

%-AI2 ~ i - A / 2  

Then (36) is implemented as 

Recall that 6 is the deviation about the mean of the sum of the external path and the modified 
internal path. This quantity is actually somewhat observable for the science interferometer. 

4. Sources of error. The mechanical sources for error in the determination of the white 
light estimate are those mechanisms that directly contribute variations about the mean of the 
external path and variations about the mean of the modified internal path defined in (1) and (15), 
respectively. 

Since the star direction vector may assumed to be fixed in inertial space over the duration of 
the observation, the only way the external path can change is by a change in the inertial position 
of the interferometer baseline vector. This vector is defined as the difference between the two 
fiducial positions on the siderostat mirrors, and is thus affected by both rigid body motion of the 
instrument and vibrations propagating through the siderostats. The only means for active control 
of the external pathlength is via the attitude control system. Because the bandwidth of the attitude 
control system is between .1Hz and .OlHz, and the modulation period is typically less than a second 
(.lsec for grid star, faster for a guide star), the rigid body contribution to ~ 5 : ~ ~  is the dominant term 
for the science interferometer and is essentially linear. (A representative disturbance spectrum for 
the felxible body contribution is being developed.) The pathlength control system compensates for 
the rigid body motion to maintain the total pathlength error to the 10nm requirement to ensure 
good fringe visibility. The controller therefore introduces a large change in the internal path for 
the science interferometer. Assuming the rigid body motion of the instrument is a sinusoid with 
amplitude of 10-5rad (about 2asec) and a frequency of . O l H z ,  the maximum external pathlength 
velocity is about 6pm/sec. If a phase measurement is made every .lsec, as is assumed for the 
science interferometer, the pathlength controller' must vary the internal pathlength by .6pm to 
compensate for the change in the external pathlength over the phase measurement time period to 
achieve the l O n m  requirement. Hence, the presence of pathlength control mitigates the external 
and internal pathlength variations that contribute to the white light estimation error. In fact the 
guide interferometers and external metrology provide the signal that drives the compensation and 
if the control system acts ideally, the internal pathlength changes introduced by the controller 
completely cancel the external pathlength changes. 
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In the real situation the compensation is effective over some specified bandwidth, and a residual 
variation remains with spectral content beyond the bandwidth of the controller. Also what remains 
uncompensated are the inaccuracies of the signal, the implementation of the controller, internal 
vibrations/drifts, and modulator motion error. Using a fixed gain phase measurement algorithm, 
the contribution of modulator motion to the error is the difference between the assumed motion 
and the true motion of the modulator. 

5.  Non-monochromatic problem. The analysis thus far has centered around the monochro- 
matic light case. Modifications are necessary when the spectral bandwidth is not vanishingly small. 
In this section we will take a preliminary look at some of the parameters that may mandate these 
modifications. We examine three parameters: the number of spectral channels (which determines 
the channel width), the number of time bins, and the pathlength delay that is to be estimated. 
For example, increasing the number of channels eventually reduces to the monochromatic case. 
So one question is how many channels are necessary to make the problem look monochromatic? 
And when this is not possible, what modifications of the baseline monochromatic estimator are 
necessary to recover performance? We will be treating only the simplest model that assumes a 
rectangular bandpass with constant intensity/visibility within the channel. For simplicity we will 
only analyze the situation using a phase stepping (as opposed to integrating bucket) modulation 
scheme. 

When the monochromatic estimator is not sufficient for this model there are essentially two 
modifications that can be made. The simplest one involves including a known sinc function in the 
matrix equation that relates the state variables (intensity and phasor quantities) to the measured 
intensities. The more complex model contains the unknown delay as part of the sinc term. This 
model leads to a nonlinear estimation problem to determine the state variables. We will focus 
attention throughout this discussion on a single spectral channel with mean wave number ko (ko = 
27~/Xo, with A0 denoting the corresponding wavelength) and channel width Ak. We will assume 
throughout that Ak = 27r/(103M) (units of l/nm) where M denotes the number of spectral 
channels. (This value of Ak approximately corresponds to a spectral band between 500nm and 
1OOOnm divided into M channels.) For a pathlength difference, x, the intensity model using a 
rectangular bandpass is [l] 

I = &[l+ Vsinc(Akx/2) COS(~OZ)] .  (37) 
If S denotes the unknown delay, and the pathlength is modulated in N equidistant steps, xi = 
iXo/N, i = 1, ..., N ,  the estimation problem is to  determine 6 from the N equations 

yi = 10[l+ Vsinc(Akzi/2 + Ak6/2) cos(kozi + koS)] (38) 

In what follows yi, ko, Ak, and xi are all assumed to be known, i.e., we are postulating a phase 
stepping method in which there is no measurement error, the wavenumbers and spectral channels 
widths have been precisely calibrated, and the phase steps have no error. 

It is useful to relate the value of the sinc function in (1) to unity to capture the comparison 
between the models (2) and (3). If M channels are used and the modulation sweeps a micron, the 
m a x i "  deviation of sinc(Akx/2) from unity is about 7r2/(6M2); which provides some measure 
of the deviation between the two models. To truly quantlfy the errors in the estimate of the delay 
it is necessary to solve for the delays in the two models. 
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The ususal manipulation of (3) leads to the linear estimation problem from the system 

0 
r 
g 
s 
B 
1 - 6 

-0.5 

where ui = kozi and 4 = k06. (The slightly different form of the equations is due to the 
phase-stepping versus integrating-bucket modes of phase modulation.) We will write the nom- 
inal monochromatic system of equations as 

-. . -- 
\os. 8 channels 

4 bins, 8 channels 
\--- 

\ 
- 

In the figure below we plot the true delay versus the error in the delay estimate based on the model 
(3). These errors were computed for four different combinations of time bins and spectral channels. 
The wavelength and modulation length axe both 750 nm in these plots. 

4 bins, 8 channels 
\ 

YM. 4 &annet! 
\ 

.\ 

0 5 10 15 20 25 30 35 40 45 
-1 

delay (nm) 

Figure 1. Phase estimation emor using monochromatic alogrithm 

Thus it is seen that using eight spectral channels produces a relatively small error (although not 
necessarily acceptable for all applications). This error is what is obtainable without modifying the 
basic algorithm. 
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In the next figure the number of channels is increased to 16, and two modulation lengths were 
used: 750 nm and 1000 nm, while the wavelength was fixed at 750 nm. The resulting error in the 
worst case is less than 50pm. 

-0.01 ' I 
0 5 10 15 20 25 30 35 40 45 50 

delay (nm) 

Figure 2. Phase estimation error using monochromatic alogrithm with 1 6 spectral channels 

Next we model (1) using the sinc function, but only at the known modulated delays. This 
model has the form 

r y1 -I r 1 sinc(Akz1/2) cos(u1) -sinc(Akq/2) sin(u1) 1 r 1 

I :  1 . 1  I = I :  I .  I I Iocos(4) I 7 (41) 
YN 1 shC(AkZ~/2) C O S ( ~ N )  -sinc(Akz~/2) sin(vN) IO 

which we write in matrix form as 

(42) y = AX. 

In anticipation of a larger nonlinearity that results when the number of spectral channels is de- 
creased and/or the delay offset becomes larger, we introduce the matrix function A(6), 

With this notation, A = A(0). 
The phase estimate is recovered exactly as before, viz. 6 = arctan(&/&) where 2 = Aty. (At 

is the pseudoinverse of A.) It is important to realize that this is still a linear estimation problem. 
Figure 3 contains results, analogous to those in Figure 1. It is seen that an eight bin/eight spectral 
channel algorithm yields a very small error that should sufEce for almost all applications. However, 
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the use of eight spectral channels may increase the read noise penalty to be unusable on dim stars. 
In the worst case (four bins, four channels, 50nm offset), an error of about 85 pm results. 

Because the results are somewhat insensitive to the small error in the model of the sinc function 
(using A(0) instead of A(S)), we conjecture that error analysis of this algorithm does not have to 
include the effects of (small) errors introduced through the sinc term in (1). Hence, much of the 
analysis should very closely follow the analysis that has been worked through for monochromatic 
light. 

I 

-=1 \4 bins, 4 channels 

Figure 3. Phase estimation errors due to amprecise modeling for  4 configurations. 

5.1. A nonlinear estimation scheme. For larger values of Ak and S (or more stringent 
requirements) a nonlinear approach to the estimation problem is necessary. Thus we introduce the 
function 

where S(z) = tan-l(zS/zz), and determine a fixed point of the map. That is we solve the equation 
G ( 4  = [A(6(4)ltY, (44) 

2 = G(z). (45) 

Z ~ + I  = G ( z ~ ) ,  zo = G(0) = A(0)ty. (46) 

This equation is solved via the fixed-point teration scheme 

Convergence of the scheme is motivated as follows. First we note that a fixed point exists. (This 
is guaranteed by (2). In the case of noise on the measurements, a regularity argument must be 
used to prove existence.) Given that a fixed point exists, local convergence of the iteration (11) is 
established if it can be shown that IG'(z)I < 1 in a neighborhood of the solution. An important 
approximation leading to  this result is (see [3]) 
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